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Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons
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The Hindmarsh-Rose (HR) system of equations is a model that captures the essential of the spiking activity
of biological neurons. In this work we present an exploratory numerical study of the time activities of two HR
neurons interacting through electrical synapses. The knowledge of this simple system is a first step towards the
understanding of the cooperative behavior of large neural assemblies. Several periodic and chaotic attractors
where identified, as the coupling strength is increased from zero until the perfect synchronization regime. In
addition to the known phase locking synchronization at weak coupling, electrical synapses also allow for both
in-phase and antiphase synchronization from moderate to strong coupling. A regime where the system changes
apparently randomly between in-phase and antiphase locking evolves to a bistability regime, where both
in-phase and antiphase periodic attractors are locally stable. At the strong coupling regime in-phase chaotic

evolution dominates, but windows with complex periodic behavior are also present.
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I. INTRODUCTION

The Hindmarsh-Rose (HR) neuron model [1] can repro-
duce most of the different activity regimes of biological neu-
rons. For different external input currents, the isolated HR
neuron may stay quiescent, spike regular or chaotically, and
burst regular or chaotically. See Ref. [2] for a detailed de-
scription of the single HR neuron behavior.

This work is concerned with the electrical coupling be-
tween two HR neurons. Electrical synapses, also called gap
junctions are binary couplings between neurons where the
current exchange is simply due to the difference between
their membrane potential. Their existence in mammalian
brain is nowadays well established. We refer to Ref. [3] for a
detailed study of the role played by electrical synapses in
promoting synchronization in a pair of integrate-and-fire
model neurons, and the references therein for the evidence of
the presence of electrical synapses in the mammalian brain.

The activity of coupled HR neurons is being largely stud-
ied in recent years. The switching among different phase-
locking regimes, for small electrical coupling, was studied in
Refs. [4,5]. Phase synchronization between chaotic neurons,
electrically coupled, was studied in Refs. [6,7]. A detailed
study of the synchronization between two coupled electronic
HR neurons was presented in Ref. [8]. There, the authors
show that excitatory coupling can produce in-phase burst
synchronization, while antiphase burst synchronization re-
sults from inhibitory coupling. In the same paper, it was
shown that an electronic HR neuron is able to synchronize
in-phase with a living neuron of the lobster Panulirus inter-
ruptus. In Ref. [9] the the authors show that a two-
dimensional network in which each HR neuron is electrically
coupled to its nearest neighbors shows bistability between a
phase with global synchronization and a phase with partial
synchronization. An accurate study of the phase synchroni-
zation state was presented in Ref. [10].

*Electronic address: rubem @if.ufrgs.br
"Electronic address: mainieri @if.ufrgs.br
*Electronic address: leon @if.ufrgs.br

1539-3755/2006/74(6)/061906(3)

061906-1

PACS number(s): 87.10.+¢, 64.60.Cn, 07.05.Mh, 05.45.—a

The role of the coupling strength on the electrical activity
of connected neurons was explored in a recent paper [11].
There, the authors noticed that with an increasing coupling
strength, the incoherence is increased in a first moment, be-
fore decreasing to synchronized states by means of a double
transition, being the first transition associated to synchroni-
zation of bursts and the second to the synchronization of
spikes. See also Refs. [12,13].

We report here a numerical study of two electrically
coupled HR neurons. Our goal was to explore the rich dy-
namical behavior that emerges from this system, mainly at
moderate and strong coupling. To our knowledge, most of
the chaotic and complex periodic attractors related to the
two-neuron system were not yet discussed in the literature.
In what follows we present our results and discussions con-
cerning the moderate and strong coupling regime of chaotic
HR neurons. At the end, we resume the paper and address
some concluding remarks.

II. THE HINDMARSH-ROSE MODEL

The time evolution of a pair of HR neurons is described
by a set of three differential equations for each neuron. With
i,j=1,2, we have

Ai 2 3
E=yi+3xi —x; =+ 1+ elx;—x)),

dy;
o 1 —Sxiz—y,»,

%:—rzi+r5(x,~+l.6). (1)
The variable x; represents the membrane potential of the neu-
ron labeled i. The variables y; and z; represent, respectively,
“fast” and “slow” ion currents in the neuron dynamics. Con-
stants r, I, and S are model parameters representing currents
and conductances, adjusted in order to reproduce the biologi-
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FIG. 1. (Color online) The largest and the second largest
Lyapunov exponents as a function of the coupling €. Black line,
small-€ attractor; grey (red online) line, large-€ attractor. The two
attractors coexist in the interval 0.204 < €=<0.225.

cal behavior. The electric coupling is introduced with the
addition of an ohmic term to the first equation for each neu-
ron. The parameter € plays a role of a conductivity. Through
all this work, we assume the literature values »=0.0021 and
S=4 (see Ref. [9]). We fix the external current I=3.38, where
the isolated neuron follows a chaotic evolution. The model
equations were integrated using a variable step fourth-order
Runge-Kutta algorithm.

III. COUPLING OF CHAOTIC NEURONS

A rich dynamical behavior is observed when two HR neu-
rons are allowed to synchronize with a moderate to large
coupling constant. We present in Fig. 1 the largest and the
second largest Lyapunov exponents for O0<e=<0.51. The
calculation of the Lyapunov spectrum was done by
following the method presented in Ref. [14]. In the interval
0=¢€=0.0013 the system remains as if uncoupled, with both
neurons following a chaotic, uncorrelated evolution. In this
interval, the Lyapunov spectra is twice degenerated. At
€=0.013 the system synchronizes, and a 13-spikes per burst
periodic attractor becomes stable. The system enters into a
phase-locking regime, but the phase differences cannot be
calculated through a phase dynamic approach since the
single neuron is not periodic.

Reaching €=0.033 chaotic evolution becomes dominat-
ing, but several windows of periodicity are observed. In gen-
eral lines, for e<0.1936 the chaotic evolution is as shown in
Fig. 2, that corresponds to €=0.15. There is no pulse syn-
chronization at all. Concerning the burst synchronization,
when following a large time interval the system alternates
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FIG. 2. (Color online) Chaotic time evolution of two neurons for
€=0.15.
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FIG. 3. (a) (Color online) Distribution of time intervals for a
complete in-phase antiphase cycle for the chaotic evolution with
€<0.1936. (b) Time constant A of the exponential tail in
P(7) ~exp(-A7).

between in-phase and antiphase burst synchronization. It is
also observed that as € increases, the time interval for a com-
plete in-phase or antiphase cycle increases, and seems to
diverge for €—0.1936. In Fig. 3(a) the distribution of the
time intervals is plotted in a log-linear plot, displaying an
exponential tail. If an exponential law P(7)~exp(-A7) is
adjusted to the tail, the relation between the time constant A
and the coupling € is given by Fig. 3(b), showing a non-
monotonic decrease.

The picture that we can draw, for the increase of the time
intervals, is that the chaotic attractor is composed of two
distinct states in the phase space. As € approaches 0.1936, it
becomes more and more difficult the transit between these
two states. The nonmonotonicity in the A X € relation means
that the increase in the difficulty to pass from one part of the
attractor to the other is not monotonic. This description lets
us expect that for €>0.1936 the two attractors, the in-phase
and the antiphase, should coexist. This is indeed the
case. The two periodic attractors are shown in Fig. 4 for
€=0.205. It is important to stress that the antiphase synchro-
nization was obtained with the same electric coupling as the
in-phase synchronization.

The coexistence of the two attractors is shown in the
Lyapunov exponents (Fig. 1): in the interval 0.204=<¢€
=0.225 two pairs of exponents that are shown. The pair of
exponents that correspond to the in-phase attractor is shown
in grey (red online), while that corresponding to the an-
tiphase is shown in black. It can be seen that the largest
exponent for the in-phase solution is slightly positive. We are
not sure if this positive value results from a lack of accuracy
in our calculation, or if the in-phase attractor is marginally
chaotic.
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FIG. 4. (Color online) Coexisting (a) in-phase and (b) antiphase
attractors for €=0.205.
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FIG. 5. (Color online) (a) six-burst long symmetric attractor for

€=0.27. (b) six-burst long asymmetric attractor for €=0.386.

For €=0.224 only the in-phase attractor is stable. In the
interval 0.23 < ¢e=0.449 the chaotic behavior with in-phase
burst synchronization dominates, but several periodicity win-
dows with very complexes periodic states can be found. Two
examples are shown in Figs. 5(a) and 5(b), respectively, for
€=0.27 and €=0.386. These examples can be used to intro-
duce a classification to the periodic states. We define a
bursting sequence of the form n;/n,y ,n5/ny, ... .0/ Ryy,
where ny;/n,; means a synchronized burst where neuron 1
spikes n;; times while neuron 2 spikes n,; times. For
€=0.27 the periodic attractor has a bursting sequence of
23/24,16/15,15/14. In the next three bursts, the two neu-
rons change their role, completing the period with a bursting
sequence of 24/23,15/16,14/15. This means that the com-
plete period of this state is six bursts long. Since the two
neurons play the same role in the dynamics, we classify this
as a symmetric state. The periodic attractor at €=0.386
shown in Fig. 5(b) has a bursting sequence of
23/23,22/23,16/16,17/17,22/22,24/25. This is also a six
bursts long period, but since the two neurons play a distinct
role in the dynamics, we classify this as an asymmetric state.

Concerning the chaotic states, they consist of a sequence
of bursts n;/n,;, in general the same as those observed in the
periodic states, but in a nonordered sequence.
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We end this discussion by mentioning that in the interval
0.449=<€=0.51 a periodic evolution dominates, with small
chaotic intervals when the number of spikes per burst
changes. At e~0.51 the system becomes perfectly synchro-
nized, behaving as a single neuron.

IV. CONCLUSIONS

We have explored the rich dynamical behavior of a sys-
tem composed of two chaotic neurons in the moderate to
strong coupling regimes. At moderate coupling, chaotic al-
ternation between in-phase and antiphase synchronization
was observed. At the transition between moderate to strong
coupling two periodic attractors, an in-phase and an an-
tiphase one coexist. At the strong coupling regime, only in-
phase synchronization, with chaotic and complex periodic
attractors can be observed.

We may question ourselves about the relevance of the fine
details concerning the bursting dynamics, discussed above.
Nowadays, it is under investigation what is important for the
neural coding [15]. Is only the burst synchronization impor-
tant, or are the individual pulses inside a burst also impor-
tant? In this case, the study of fine details is justified, and we
can advance that a working system should be tuned to oper-
ate in chaotic regime, where it can carry relevant informa-
tion, contrary to the periodic regime. Further investigation
should concentrate in measurements of the entropy of the
two neurons system, and the robustness of the fine details to
noise effects.
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